

Primary PFS and safety analyses of a randomised Phase III study of carboplatin + paclitaxel +/- bevacizumab, with or without atezolizumab in 1L non-squamous metastatic NSCLC (IMpower150)

Martin Reck,¹ Mark A. Socinski,² Federico Cappuzzo,³ Francisco Orlandi,⁴ Daniil Stroyakovskii,⁵ Naoyuki Nogami,⁶ Delvys Rodríguez-Abreu,⁷ Denis Moro-Sibilot,⁸ Christian A. Thomas,⁹ Fabrice Barlesi,¹⁰ Gene Finley,¹¹ Claudia Kelsch,¹² Anthony Lee,¹² Shelley Coleman,¹² Yijing Shen,¹² Marcin Kowanetz,¹² Ariel Lopez-Chavez,¹² Alan Sandler,¹² Robert Jotte¹³

¹Lung Clinic Grosshansdorf, Airway Research Center North, German Center of Lung Research, Grosshansdorf, Germany;
²Florida Hospital Cancer Institute, Orlando, FL, USA; ³Azienda Unità Sanitaria Locale della Romagna, Ravenna, Italy;
⁴Instituto Nacional del Torax, Santiago, Chile; ⁵Moscow City Oncology Hospital, Moscow, Russia; ⁶National Hospital Organization Shikoku Cancer Center, Matsuyama, Japan; ⁷Hospital Universitario Insular de Gran Canaria, Las Palmas, Spain; ⁸Centre Hospitalier Universitaire de Grenoble Alpes, Grenoble, France; ⁹New England Cancer Specialists, Scarborough, ME, USA; ¹⁰Aix Marseille University, Assistance Publique Hôpitaux de Marseille, Marseille, France; ¹¹Allegheny Cancer Center, Pittsburgh, PA, USA; ¹²Genentech, Inc., South San Francisco, CA, USA; ¹³Rocky Mountain Cancer Centers, Denver, CO, USA

esmo.org

Disclosures

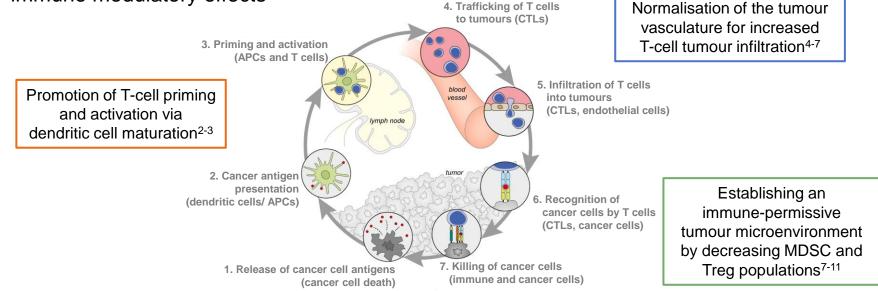
- Dr Martin Reck has the following to disclose:
 - Consulting or advisory role for AstraZeneca, Boehringer Ingelheim, Bristol-Myers Squibb, Celgene, Eli Lilly, F. Hoffmann-La Roche, MSD, Novartis and Pfizer
 - Speakers' bureau for AstraZeneca, Boehringer Ingelheim, Bristol-Myers Squibb, Celgene, Eli Lilly, F. Hoffmann-La Roche, MSD, Novartis and Pfizer
- This study is sponsored by F. Hoffmann-La Roche, Ltd

Background: NSCLC landscape

- Standards of care for patients with advanced 1L NSCLC include^{1,2}:
 - Targeted therapies (patients with *EGFR* mutation or *ALK* rearrangement)
 - Pembrolizumab (anti–PD-1) in patients with PD-L1 expressing tumours with TPS ≥ 50% (≈ 25%-30% prevalence)
 - Platinum-based chemotherapy +/- bevacizumab³
- Atezolizumab (anti–PD-L1) has demonstrated overall survival benefit⁴ and is approved in the US⁵ and EU⁶ for the treatment of 2L+ NSCLC regardless of PD-L1 expression
- Phase Ib data of atezolizumab + platinum-doublet chemotherapy in patients with 1L NSCLC demonstrated promising efficacy and tolerable safety⁷

NSCLC; non-small cell lung cancer; PD-1, programmed death-1;

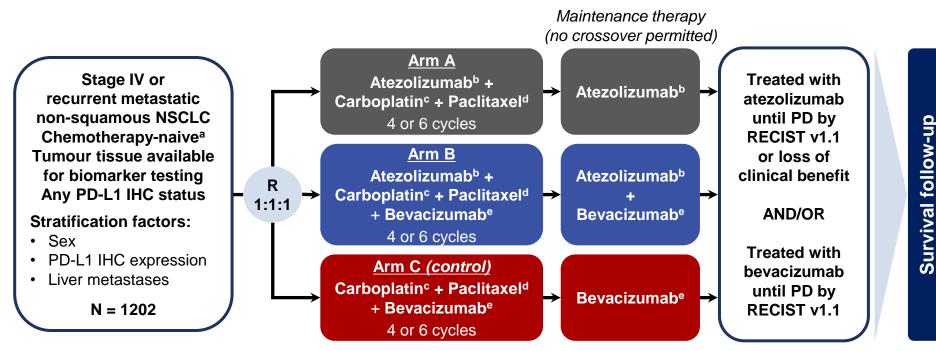
PD-L1, programmed death-ligand 1; TPS, tumour proportion score.


^{1.} Novello S, et al. Ann Oncol, 2016. 2. NCCN Clinical Practice Guidelines in Oncology. NSCLC. V7.2017.

^{3.} Sandler A, et al. N Engl J Med, 2006. 4. Rittmeyer A, et al. Lancet, 2017. 5. TECENTRIQ [USPI]. Genentech Inc, 2017.

^{6.} TECENTRIQ [SmPC]. Roche Registration Ltd, 2017. 7. Liu SV, et al. ASCO 2017.

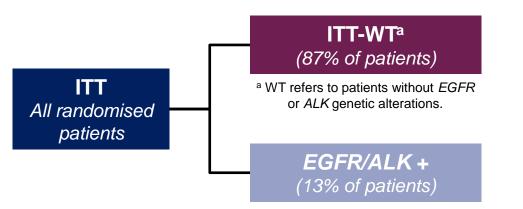
Rationale for combining atezolizumab + bevacizumab


 In addition to its known anti-angiogenic effects¹, bevacizumab's inhibition of VEGF has immune modulatory effects
A Trafficking of T cells

 Atezolizumab's T-cell mediated cancer cell killing may be enhanced through bevacizumab's reversal of VEGF-mediated immunosuppression

1. Ferrara N, et al. *Nat Rev Drug Discov*, 2004. 2. Gabrilovich DI, et al. *Nat Med*, 1996. 3. Oyama T, et al. *J Immunol*, 1998. 4. Goel S, et al. *Physiol Rev*, 2011. 5. Motz GT, et al. *Nat Med*, 2014. 6. Hodi FS, et al. *Cancer Immunol Res*, 2014. 7. Wallin JJ, et al. *Nat Commun*, 2016. 8. Gabrilovich DI, Nagaraj S. *Nat Rev Immunol*, 2009. 9. Roland CL, et al. *PLoS One*, 2009. 10. Facciabene A, et al. *Nature*, 2011. 11. Voron T, et al. *J Exp Med*, 2015. Figure adapted from Chen DS, Mellman I. *Immunity*, 2013.

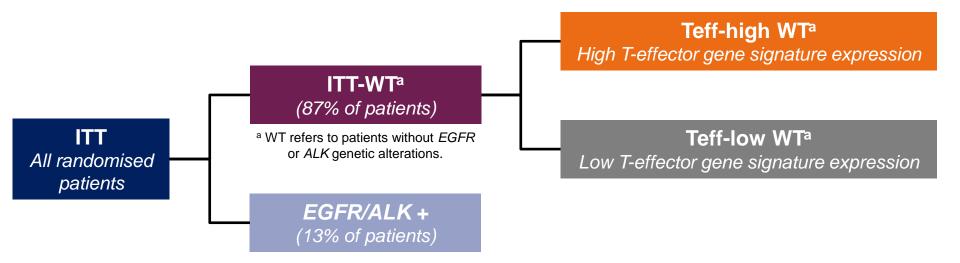
IMpower150 study design


The principal question is to assess whether the addition of atezolizumab to Arm C provides clinical benefit

^a Patients with a sensitising *EGFR* mutation or *ALK* translocation must have disease progression or intolerance of treatment with one or more approved targeted therapies. ^b Atezolizumab: 1200 mg IV q3w. ^c Carboplatin: AUC 6 IV q3w.

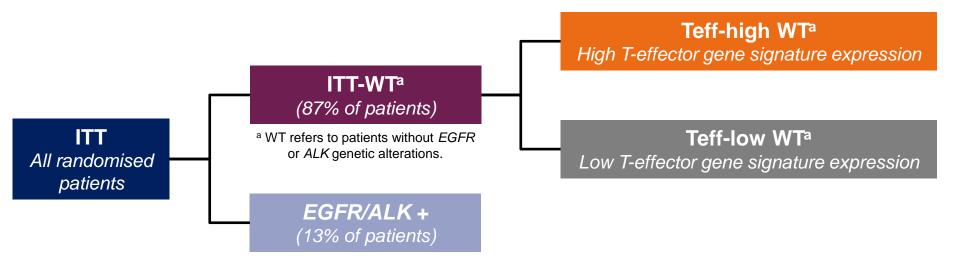
^d Paclitaxel: 200 mg/m² IV q3w. ^e Bevacizumab: 15 mg/kg IV q3w.

Reck M, et al. IMpower150 PFS analysis.



Co-primary objectives

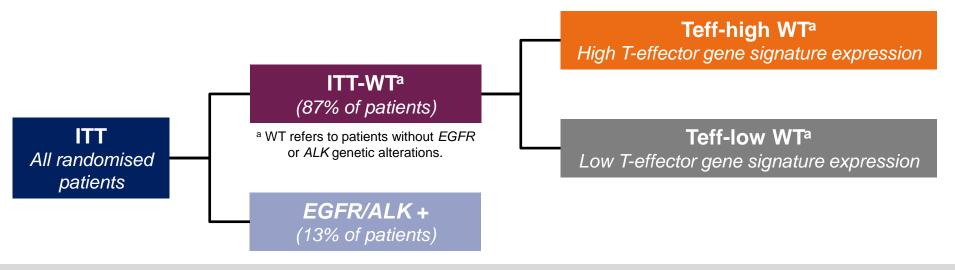
Investigator-assessed PFS in ITT-WT



Co-primary objectives

- Investigator-assessed PFS in ITT-WT
- Investigator-assessed PFS in Teff-high WT

The T-effector (Teff) gene signature is defined by expression of *PD-L1*, *CXCL9* and *IFN* and is a surrogate of both PD-L1 IHC expression and pre-existing immunity (Kowanetz M. et al. WCLC, 2017).



Co-primary objectives

- Investigator-assessed PFS in ITT-WT
- Investigator-assessed PFS in Teff-high WT
- OS in ITT-WT

The T-effector (Teff) gene signature is defined by expression of *PD-L1*, *CXCL9* and *IFNγ* and is a surrogate of both PD-L1 IHC expression and pre-existing immunity (Kowanetz M, et al. WCLC, 2017).

Co-primary objectives

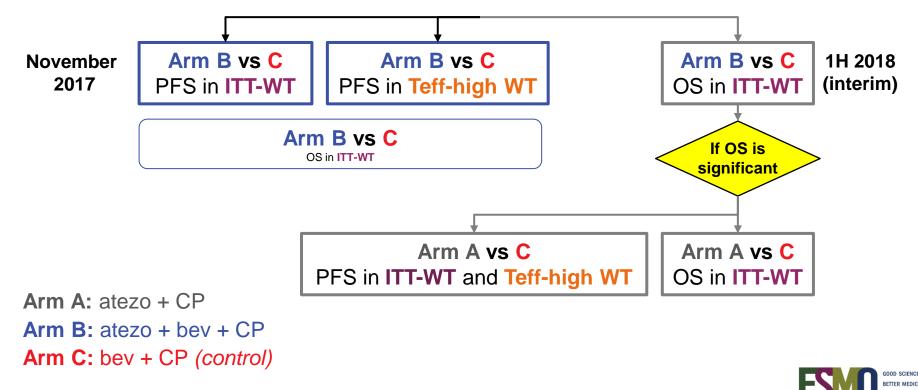
- Investigator-assessed PFS in ITT-WT
- Investigator-assessed PFS in Teff-high WT
- OS in ITT-WT

Key secondary objectives

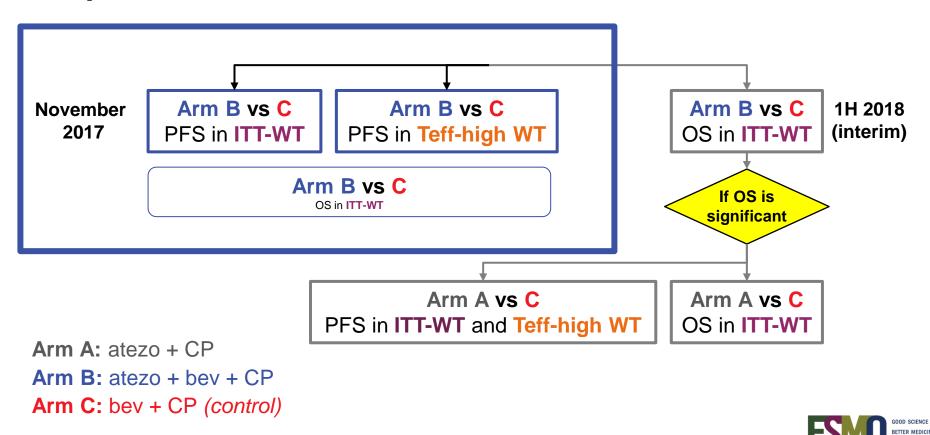
- Investigator-assessed PFS and OS in ITT
- Investigator-assessed PFS in PD-L1 IHC subgroups
- Independent review facility (IRF)-assessed PFS
- ORR and DOR per RECIST v1.1
- Safety in ITT

The T-effector (Teff) gene signature is defined by expression of *PD-L1*, *CXCL9* and *IFN* and is a surrogate of both PD-L1 IHC expression and pre-existing immunity (Kowanetz M. et al. WCLC, 2017).

Reck M, et al. IMpower150 PFS analysis.


Biomarkers in IMpower150

- IMpower150 provided the opportunity to evaluate multiple strategies to enrich for PFS, including T-effector (Teff) gene signature expression and PD-L1 IHC
- The Teff gene signature is defined by mRNA expression of 3 genes (*PD-L1*, *CXCL9* and *IFNγ*) and is a surrogate for both PD-L1 expression and pre-existing immunity
 - In the OAK study, the Teff gene signature appeared to be a more sensitive biomarker of PFS benefit for monotherapy atezolizumab vs docetaxel than PD-L1 IHC expression¹
- PD-L1 expression was evaluated using the SP142 IHC assay, as defined in the Phase III OAK study of atezolizumab vs docetaxel²



10 1. Kowanetz M, et al. WCLC 2017 [abstract MA 05.09]. 2. Rittmeyer A, et al. Lancet, 2017.

Statistical testing plan for the co-primary endpoints in IMpower150

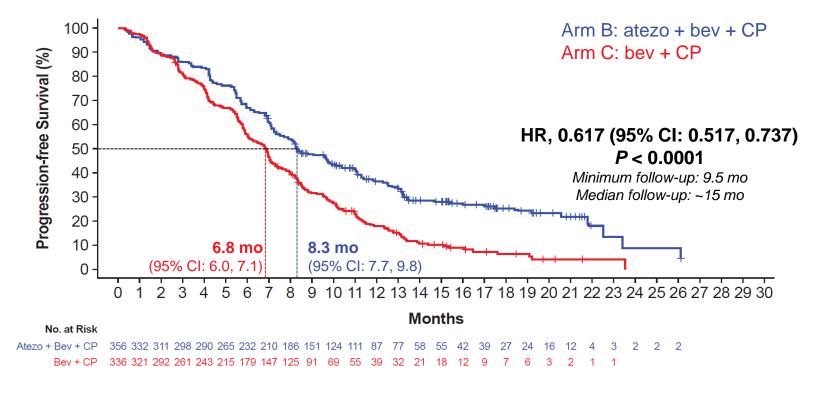
Statistical testing plan for the co-primary endpoints in IMpower150

Baseline characteristics in ITT

Baseline characteristics	Arm A: atezo + CP (N = 402)	Arm B: atezo + bev + CP (N = 400)	Arm C (<i>control</i>): bev + CP (N = 400)
Median age (range), years	63 (32-85)	63 (31-89)	63 (31-90)
Sex, male, n (%)	241 (60%)	240 (60%)	239 (60%)
ECOG PS, 0, n (%)	180 (45%)	159 (40%)	179 (45%)
Tobacco use history, n (%) Current smoker Previous smoker Never smoker	98 (24%) 227 (57%) 77 (19%)	90 (23%) 228 (57%) 82 (21%)	92 (23%) 231 (58%) 77 (19%)
Liver metastases, yes, n (%)	53 (13%)	53 (13%)	57 (14%)
EGFR mutation, positive, n (%)	46 (11%)	35 (9%)	45 (11%)
ALK rearrangement, positive, n (%)	9 (2%)	13 (3%)	21 (5%)
Teff gene signature expression, high, n (%) ^a	177 (44%)	166 (42%)	148 (37%)
Of those tested	124	106	115
KRAS mutation, positive, n (%)	36 (29%)	47 (44%)	38 (33%)
PD-L1 expression, n (%) ^b TC2/3 or IC2/3 TC1/2/3 or IC1/2/3 TC0 and IC0	137 (34%) 213 (53%) 188 (47%)	140 (35%) 209 (52%) 191 (48%)	133 (33%) 195 (49%) 205 (51%)

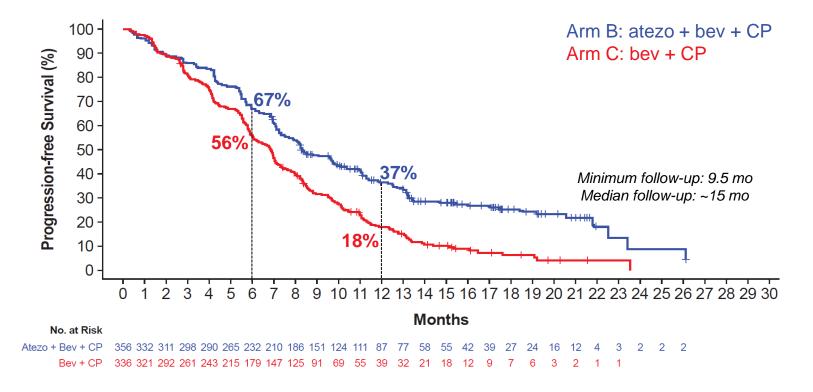
IC, tumour-infiltrating immune cells; TC, tumour cells.

^a The Teff gene signature high cut-off ≥ –1.91 was used. ^b 1 patient in Arm A had unknown PD-L1 IHC expression.


TC2/3 or IC2/3 = TC or IC ≥ 5% PD-L1+; TC1/2/3 or IC1/2/3 = TC or IC ≥ 1% PD-L1+; TC0 and IC0 = TC and IC < 1% PD-L1+.

13 Data cutoff: September 15, 2017

Reck M, et al. IMpower150 PFS analysis.


INV-assessed PFS in ITT-WT (Arm B vs Arm C)

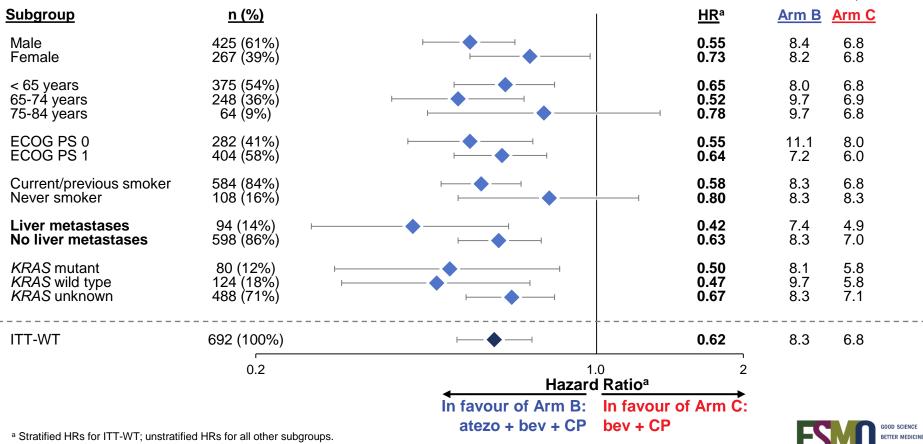
Reck M, et al. IMpower150 PFS analysis.

INV, investigator. 14 Data cutoff: September 15. 2017

INV-assessed PFS in ITT-WT (Arm B vs Arm C)

INV, investigator.15 Data cutoff: September 15, 2017

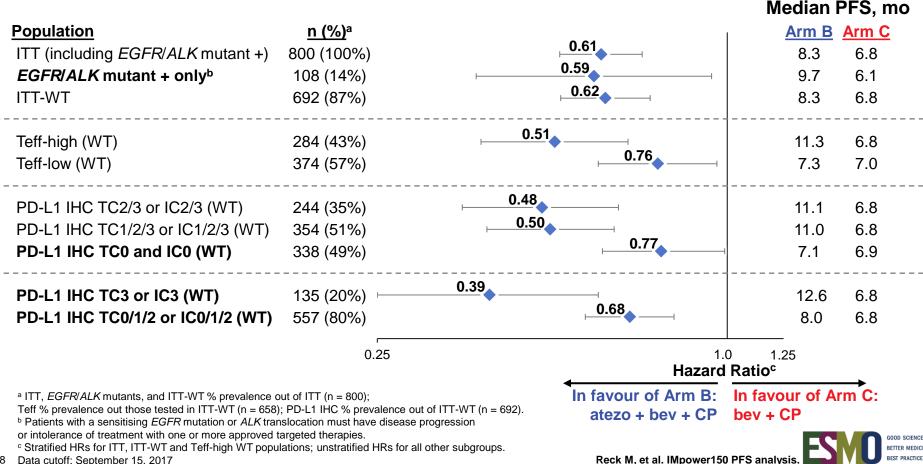
INV-assessed PFS in Teff-high WT (Arm B vs Arm C)



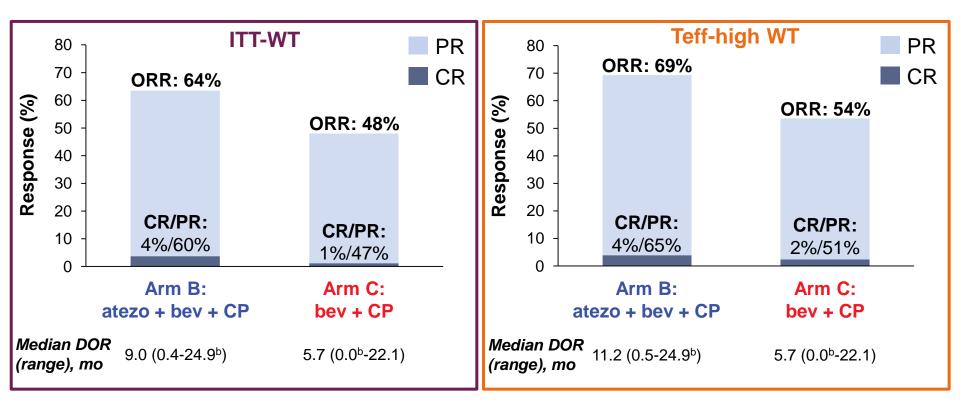
INV, investigator.Data cutoff: September 15, 2017

PFS in subgroups of interest in ITT-WT

Median PFS, mo

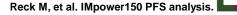

PRACTICE

17 Data cutoff: September 15, 2017


Reck M, et al. IMpower150 PFS analysis.

PFS in key biomarker populations

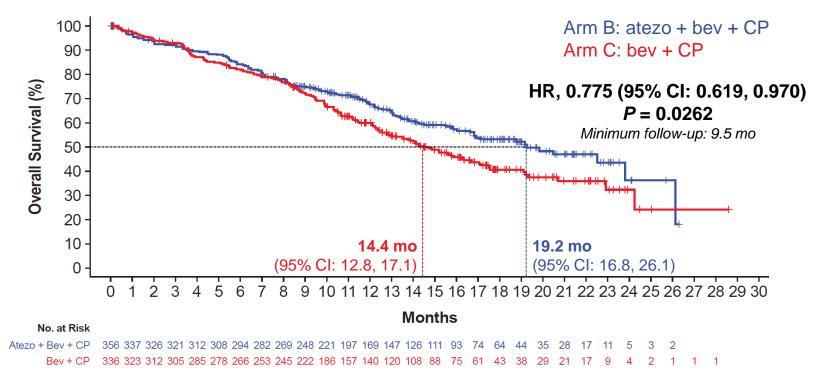
Data cutoff: September 15, 2017 18


ORR^a and **DOR** in **ITT-WT** and **Teff-high WT**

^a Investigator-assessed ORR.

^b Censored value.

19 Data cutoff: September 15, 2017



GOOD SCIENCE

BETTER MEDICINE

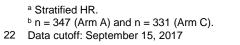
PRACTICE

Preliminary OS in ITT-WT (Arm B vs Arm C)

 Promising preliminary OS benefit for Arm B vs Arm C was observed; next OS interim data are anticipated in 1H 2018

Preliminary efficacy in ITT-WT (Arm A vs Arm C)

	IT	ITT-WT			
	Arm A: atezo + CP (n = 348)	Arm C (<i>control</i>): bev + CP (n = 336)			
PFS HR ^a (95% CI)	0.936 (0	0.936 (0.787, 1.112)			
ORR, ^b n (%)	171 (49%)	159 (48%)			


 Formal statistical testing for Arm A vs Arm C will be conducted only after the OS boundary for Arm B vs Arm C is crossed

Preliminary efficacy in ITT-WT (Arm A vs Arm C)

	IT	ITT-WT		
	Arm A: atezo + CP (n = 348)	Arm C (<i>control</i>): bev + CP (n = 336)		
PFS HR ^a (95% CI)	0.936 (0	.787, 1.112)		
ORR, ^b n (%)	171 (49%)	159 (48%)		
OS HR ^a (95% CI)	0.884 (0	.709, 1.101)		

 Formal statistical testing for Arm A vs Arm C will be conducted only after the OS boundary for Arm B vs Arm C is crossed

Safety summary

	Arm A:	Arm B:	Arm C (<i>control</i>):
	atezo + CP	atezo + bev + CP	bev + CP
	(n = 400)	(n = 393)	(n = 394)
Median doses received (range), n Atezolizumab Bevacizumab	10 (1-37) NA	12 (1-38) 10 (1-38)	NA 8 (1-33)
All cause AE, n (%)	389 (97%)	385 (98%)	390 (99%)
Grade 3-4	226 (57%)	242 (62%)	230 (58%)
Grade 5	10 (3%)	23 (6%)	21 (5%)
Treatment-related AE, n (%)	372 (93%)	371 (94%)	376 (95%)
Grade 3-4	170 (43%)	219 (56%)	188 (48%)
Grade 5 ^a	3 (1%)	11 (3%)	9 (2%)
Serious AE, n (%)	155 (39%)	165 (42%)	134 (34%)
Treatment-related serious AE	77 (19%)	100 (25%)	76 (19%)
AEs of special interest, n (%) ^b	184 (46%)	199 (51%)	108 (27%)
Grade 3-4	37 (9%)	45 (11%)	13 (3%)
Grade 5	2 (1%)	0	0
AE leading to withdrawal from any treatment	56 (14%)	128 (33%)	98 (25%)
AE leading to dose interruption or modification	203 (51%)	235 (60%)	189 (48%)

^a Including fatal haemorrhagic AEs: Arm C: haemoptysis n = 1, pulmonary haemorrhage n = 2; Arm B haemoptysis n = 3,

pulmonary haemorrhage n = 2, haemorrhage intracranial n = 1; Arm A: haemoptysis n = 1, haemorrhage intracranial n = 1.

^b Investigator text for AEs encoded using MedDRA v20.1.

23 Data cutoff: September 15, 2017

Immune-related AEs of special interest in ≥ 5 patients across arms

	Arm A: atezo + CP (n = 400)		Arm B: atezo + bev + CP (n = 393)		Arm C (<i>control</i>): bev + CP (n = 394)	
AEs of special interest, n (%)	All grade	Grade 3-4	All grade	Grade 3-4	All grade	Grade 3-4
Rash	114 (29%)	14 (4%)	113 (29%)	9 (2%)	52 (13%)	2 (1%)
Hepatitis Laboratory abnormalities	39 (10%) 34 (9%)	12 (3%) 10 (3%)	54 (14%) 47 (12%)	19 (5%) 16 (4%)	29 (7%) 29 (7%)	3 (1%) 3 (1%)
Hypothyroidism	30 (8%)	1 (<1%)	50 (13%)	1 (<1%)	15 (4%)	0
Infusion-related reactions	16 (4%)	3 (1%)	13 (3%)	2 (1%)	11 (3%)	3 (1%)
Pneumonitis	21 (5%)	7 (2%)	11 (3%)	6 (2%)	5 (1%)	2 (1%)
Hyperthyroidism	11 (3%)	0	16 (4%)	1 (<1%)	5 (1%)	0
Colitis	3 (1%)	2 (1%)	9 (2%)	5 (1%)	2 (1%)	2 (1%)
Severe cutaneous reaction	3 (1%)	3 (1%)	4 (1%)	0	1 (<1%)	0
Adrenal insufficiency	2 (1%)	0	2 (1%)	1 (<1%)	3 (1%)	1 (<1%)
Pancreatitis	2 (1%)	2 (1%)	5 (1%)	2 (1%)	0	0

Summary

- IMpower150 is the first phase III immunotherapy-based combination study to demonstrate a statistically significant and clinically meaningful improvement in PFS in all-comer 1L NSQ mNSCLC, providing a potential new standard of care for patients
- PFS benefit was demonstrated with the addition of atezolizumab to bevacizumab + CP (Arm B) vs bevacizumab + CP (Arm C) in all populations tested, including patients with sensitising EGFR or ALK genetic alterations, Teff-low tumours, PD-L1–negative tumours and liver metastases
- Atezolizumab in combination with chemotherapy ± bevacizumab appears to be well tolerated and its safety profile is consistent with known safety risks
- OS data, while not mature, are promising in Arm B vs Arm C; next interim analysis for all arms is anticipated in 1H 2018

Acknowledgements

- The patients and their families
- Participating study investigators and clinical sites
- This study is sponsored by F. Hoffmann-La Roche, Ltd
- Medical writing assistance for this presentation was provided by Emily C. Casey, PhD, of Health Interactions and funded by F. Hoffmann-La Roche, Ltd

